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' eases of the Will: The six most dangerous
rsonalities... who never produce any original work

These illustrious failures may be classified in the
following way: the dilettantes or contemplators; the
erudite or bibliophiles; the instrument addicts; the
megalomaniacs; the misfits; and the theory builders.

Advice to a Young Investigator (1897)
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Abstract

One of the central questions in neuroscience is how particular tasks,
or computations, are implemented by neural networks to generate
behavior. The prevailing view has been that information processing
in neural networks results primarily from the properties of synapses
and the connectivity of neurons within the network, with the intrinsic
excitability of single neurons playing a lesser role. As a consequence,
the contribution of single neurons to computation in the brain has
long been underestimated. Here we review recent work showing that
neuronal dendrites exhibit a range of linear and nonlinear mecha-
nisms that allow them to implement elementary computations. We
discuss why these dendritic properties may be essential for the com-
putations performed by the neuron and the network and provide
theoretical and experimental examples to support this view.

Annu. Rev. Neurosci.
2005. 28:503-32



HOW CAN WE PROVE THAT DENDRITES
ARE INVOLVED IN COMPUTATION?

Identify the Computation:

Probing the contribution of dendrites to computation is possible only
when the computation of the neuron bearing the dendrites is identi-
fied. This requires identifying a simple behavior that involves a rec-
ognizable kind of computation (e.g., filtering, convolution, pattern
recognition) and tracing it to the neurons responsible.

Defining the Mechanism:

Use recordings (e.g., electrophysiological or imaging) from dendrites
of these neurons in an accessible preparation (e.g., brain slices) to
define the dendritic signals and biophysical mechanisms that may un-
derlie the behavior.

Correlation in the Intact Preparation:

Use recordings from dendrites in an intact preparation to show strong
correlations between dendritic signals linked with the identified com-
putation and the behavior of the animal.

Manipulation to Define a Causal Link:

Manipulate a dendritic mechanism to determine if it is both necessary
and sufficient to explain the computation. Selectively knock out the
mechanism and demonstrate that the behavior is impaired. Activate
or modify the dendritic mechanism to demonstrate that the behavior
is modified in the expected direction.

Modeling the Computation:
Use modeling to define an algorithm that describes the

computation, or sequence of computations, performed by the den-
drites that can plausibly explain the behavior. Modeling of single neu-
rons and neural networks can also be used to confirm that the com-
putation can convey a significant benefit (which can help to establish
sufficiency).



The goal: coupling dendritic physiology to behaviour
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Current flow in neurons with dendrites

Fic. 1. Diagram illustrating the flow of electric current from a microelectrode
whose tip penetrates the cell body (soma) of a neuron. The full extent of the den-
drites is not shown. The external electrode to which the current flows is at a dis-
tance far beyond the limits of this diagram.
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Wilfrid Rall (1922 — 2018)



Neuron

Wilfrid Rall (1922-2018)

Wilfrid (Wil) Rall was an outstanding sci-
entist and a unique person—warm and
modest, despite being a scientific renais-
sance man. He is the founding father of
the field of dendritic modeling and the
developer of both cable theory and the
compartmental modeling approach for
studying dendrites and synaptic integra-
tion. He was the first to draw attention to
the computational role of dendrites, to
dendritic nonlinearities, and to plastic
processes in dendritic spines. It is thanks
to Rall’s 40 years of pioneering theoretical
studies, dendrites have become the focus
of worldwide research interest, culmi-
nating in the recent evidence that local
dendritic processing may play a key role
in behavior. Rall isamong a very few neu-
roscientists that, almost single-handedly,
have changed our understanding of our

The Rall revolution began with a brief
paper in Science in 1957 with the demon-
stration that electric current flow in neu-
rons is dominated not by the cell body,
as previously thought, but by the exten-
sive dendritic tree. He thus yearned to
understand whether, and if so in what
way, the branching structure and bio-
physical properties of dendrites could
have functional implications. For a theo-
rist, the message is clear: when esti-
mating parameters like the specific
membrane resistivity (R,,) in a spatially
distributed system, one should use the
appropriate theoretical treatment/formu-
lation. In this case Rall applied cable
theory, challenging the ‘“point-neuron
model” proposed by Eccles, which over-
estimated the leakiness (i.e., underesti-
mated the value of R,,,) of the dendrites.

science. But good work prevails, and
indeed Rall’s fundamental and deep in-
sights regarding the implications of cable
properties of dendrites gradually pene-
trated deeply into the scientific commu-
nity interested in understanding signal
flow and synaptic integration in den-
drites. The basis of this work was the
cable equation (first introduced by
Lord Kelvin), which was solved by Rall
to describe current flow in dendrites
as branching cylindrical structures. This
meant solving analytically the cable equa-
tion with boundary conditions that repre-
sent repeatedly branched cables, each
branch having a particular diameter, spe-
cific membrane resistivity (R,,), capaci-
tance (C,), and cytoplasmic resistivity
(R). Rall’s recursive solution method
enabled the calculation of the impact of

Neuron, Sept. 5, 2018



The basic assumption of cable theory: dendrites are cylinders!
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r; = axial resistance (2/cm)

Sim p | ify in g assum ptio ns: ¥m = membrane resistance (Q-cm)
Cm = membrane capacitance (F/cm)

1. Extracellular resistance r,=0

2. Membrane properties are uniform throughout, for all parts of the cylinder
and are independent of membrane potential — no voltage gated channels.

3. Current flow is along a single dimension, x. So, there’s no radial current



Passive propagation in cables: the garden hose analogy

Non-leaky hose

Leaky hose

Propagation through neuronal dendrites is similar to
water flow through a leaky hose!



THE CABLE EQUATION
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Rall, 1962, 1977



Cable equation describes voltage attenuation in
different classes of cables
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Voltage attenuation is also frequency dependent
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Rall’s single equivalent cylinder model
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EQUIVALENT CYLINDER

FIG. 4. A dendritic tree illustrative of a class of trees that can be mathematically transformed into
an equivalent cylinder. The diagram corresponds to a specific numerical example (Rall, 1962a, Table
I) of a symmetric tree with a radial extent of about 800 x, and with cylindrical diameters decreasing
from a trunk of 10 s to peripheral branches of 1 4. The dashed lines connect points having the same

Z-value (electrotonic distance) in both tree and cylinder. Z is defined by Rall. 1964
all,



Attenuation of EPSPs in the single equivalent cylinder
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The NEURON simulation environment
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Using a compartmental model to estimate
attenuation of distally generated EPSPs
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Stuart & Spruston, 1998



Summary: dendrites attenuate and slow EPSPs arriving at the soma
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= the size and shape of somatic EPSPs depends on location of dendritic origin



What abeat active dendyites?



Compartmentalization of the dendritic tree by Na* and Ca?* spikes

gt T Ca?* spikes

Na™ spikes

// l20mV

50 msec

Fig. 4. Composite picture showing the relationship between somatic and dendritic
action potentials following DC depolarization through the recording electrode. A clear
shift in amplitude of the s.s. against the dendritic Ca-dependent potentials is seen when
comparing the more superficial recording in B with the somatic recordingin E. Note that
at increasing distances from the soma the fast spikes are reduced in amplitude and are
barely noticeable in the more peripheral recordings. However, the prolonged and slow-
rising burst spikes are more prominent at dendritic level.
from Llinas & Sugimori 1980
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Voltage-gated channels in dendrites
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Action potential initiation and

Synaptic
stimulation

backpropagation jn pyramidal neurons

axon

\20 111"

5 ms

dendrite

Stuart et al., J. Physiol. 1997




Backpropagation is not present in all neurons (e.g. Purkinje cells)

A somatic current pulse dendiritic current pulse
soma soma
' 20 mVv
20 ms
dendrite (108 um) dendrite (108 um)
B
100
e somatic current pulse
. 80 4 { o dendritic current pulse

g

~ 60 -
@D
3
from Stuart & Hdusser 1994 =

‘ aii |
E
<

20

0 -

0 50 100 150 200

Distance from the soma (um)



Backpropagation is cell-type specific

Nommalized AP amplitude
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Backpropagation gates the induction of LTP
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Local coincidence detection of APs and EPSPs in dendrites
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Dendrites can initiate local spikes which may or may not trigger output

.

Golding and Spruston 1998



Dendritic spikes cause local calcium influx

control + dendritic spike difference

Schiller et al., Nature 2000



Interaction between backpropagating APs and distal Ca spikes
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Interaction between backpropagating APs and distal Ca spikes

Layers Layer 1 fibres
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Interaction between backpropagating APs and distal Ca spikes
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Computational subunits in thin dendrites of cortical pyramidal cells
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Can single pyramidal cell dendrites read out spatiotemporal sequences”?

Pyramidal cell Individual responses

Sequential activation
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Integration is sensitive to sequence direction
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Sequence-dependent spike output
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Enhanced Dendritic Compartmentalization

in Human Cortical Neurons
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SUMMARY

The biophysical features of neurons shape informa-
tion processing in the brain. Cortical neurons are
larger in humans than in other species, but it
is unclear how their size affects synaptic integra-
tion. Here, we perform direct electrical recordings
from human dendrites and report enhanced electri-
cal compartmentalization in layer 5 pyramidal neu-
rons. Compared to rat dendrites, distal human
dendrites provide limited excitation to the soma,
even in the presence of dendritic spikes. Human
somas also exhibit less bursting due to reduced
recruitment of dendritic electrogenesis. Finally, we
find that decreased ion channel densities result in
higher input resistance and underlie the lower
coupling of human dendrites. We conclude that
the increased length of human neurons alters their
input-output properties, which will impact cortical
computation.

2017; Hausser and Mel, 2003; Jadi et al., 2014; London and
Hausser, 2005; Poirazi et al., 2003; Polsky et al., 2004; Tran-
Van-Minh et al., 2015).

We reasoned that the increased length of human dendrites
could further compartmentalize synaptic integration and infor-
mation processing within individual neurons. However, because
compartmentalization critically relies upon details of membrane
properties and active conductances (Atkinson and Williams,
2009; Stuart and Spruston, 1998), which cannot be predicted
by anatomical features alone, it is not known to what degree
human neurons differ from their non-human counterparts.
Here, we employ direct patch-clamp electrophysiology to test
the hypothesis that dendritic integration is more functionally
segregated in human pyramidal neurons.

RESULTS

Reduced Burst Firing in Human Neurons

We performed whole-cell recordings from layer 5 (L5) pyramidal
neurons in acute human brain slices obtained from the anterior
temporal lobe of neurosurgical patients (Figure 1A; STAR
Methods). Compared to rat temporal association cortex (TEA)

Miml wb ol MANAL., Mol wb =l ANALE\ camnaa himaanm acameaas




What about in vivo?
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Early efforts to record from dendrites in vivo
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The goal: coupling dendritic physiology to behaviour
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Orientation selectivity in primary visual cortex

I
= l Hubel & Wiesel, 1962



Dendritic nonlinearities create independent processing compartments

spikes

Bartlett Mel

“One has to consider the possibility that in the monkey the simple-cell step may be
skipped, perhaps by summing the inputs from cells in layer 4 on dendrites of
complex cells. In such a scheme each main dendritic branch of a complex cell

would perform the function of a simple cell.” _
David Hubel, Nature 299: 515-524, 1982



The goal: coupling dendritic physiology to behaviour
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In vivo patch-clamp recordings in mouse visual cortex
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“Shadowpatching” - Kitamura et al., Nature Methods 2008




Physiology of neurons in mouse visual cortex
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Imaging-guided dendritic patch recordings

1. Blind, fill, visualize 2. Shadowpatching

Layer 2/3 pyramidal neurons



Spontaneous backpropagating APs in dendrites
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Visually evoked responses in distal dendrites
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Dendritic bursts are orientation tuned

Preferred direction
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Visually evoked bursts are highly heterogeneous

high rates
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Visually evoked bursts in awake mice
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Putative tetrode recordings from dendrites in freely-moving animals
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Moore... Mehta Science 2016



Dendritic spike bursts are highly sensitive to hyperpolarization
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Dendritic spike bursts are highly sensitive to NMDA-R block
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Distributed input triggers dendritic spikes in a pyramidal cell model
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Active compartmental model of a layer 2/3 pyramidal neuron with glutamatergic (AMPA & NMDA) and GABAergic
synapses activated in distributed spatiotemporal patterns: background @ 0.5 Hz, signal (10%) @ 5 Hz



Different types of active events in the pyramidal cell model
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Distributed initiation explains high frequency of dendritic spikes

Mixture of dendritic spikes & bAP
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Interim summary

Visual input triggers large, bursty events in distal dendrites

These events cannot be accounted for by backpropagating APs,
and thus are likely to be dendritic spikes

The dendritic spikes are tuned to sensory stimuli

Dendritic spikes are blocked by hyperpolarization and
intracellular MK-801

Modelling reveals that dendritic spikes can be triggered by
distributed input and can initiate across multiple branches



Subthreshold tuning of membrane potential
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Subthreshold Vm tuning matches spike tuning
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Modulation amp. (mV)

Hyperpolarization blocks subthreshold tuning
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Intracellular block of NMDA-Rs reduces subthreshold tuning

With MK-801 in pipette
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Summary

Dendritic spikes are evoked by visual stimulation in an
orientation-tuned manner

Dendritic spikes are sensitive to hyperpolarization

The subthreshold membrane potential at the soma is
orientation tuned

Subthreshold tuning is reduced on hyperpolarization
or with NMDA-R block

==» Dendritic spikes contribute to orientation tuning



The goal: coupling dendritic physiology to behaviour
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Smith et al. Nature 2013






Specific dendritic tuft Ca%* signals during active sensing
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Specific dendritic tuft Ca%* signals during active sensing
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Manipulation of L5 apical dendrites modulates stimulus perception
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HOW CAN WE PROVE THAT DENDRITES
ARE INVOLVED IN COMPUTATION?

London & Hausser
Ann Rev Neurosci 2005

Identify the Computation:

Probing the contribution of dendrites to computation is possible only
when the computation of the neuron bearing the dendrites is identi-
fied. This requires identifying a simple behavior that involves a rec-
ognizable kind of computation (e.g., filtering, convolution, pattern
recognition) and tracing it to the neurons responsible.

Defining the Mechanism:

Use recordings (e.g., electrophysiological or imaging) from dendrites
of these neurons in an accessible preparation (e.g., brain slices) to

define the dendritic signals and biophysical mechanisms that may un-
derlie the behavior.

Correlation in the Intact Preparation:

Use recordings from dendrites in an intact preparation to show strong
correlations between dendritic signals linked with the identified com-
putation and the behavior of the animal.

Manipulation to Define a Causal Link:

Manipulate a dendritic mechanism to determine if it is both necessary
and sufficient to explain the computation. Selectively knock out the
mechanism and demonstrate that the behavior is impaired. Activate
or modify the dendritic mechanism to demonstrate that the behavior
is modified in the expected direction.

Modeling the Computation:
Use modeling to define an algorithm that describes the

computation, or sequence of computations, performed by the den-
drites that can plausibly explain the behavior. Modeling of single neu-
rons and neural networks can also be used to confirm that the com-
putation can convey a significant benefit (which can help to establish
sufficiency).

N X N N N



Single dendritic branches as fundamental functional units in the CNS
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Branco & Hausser, Current Opinion in Neurobiology, 2010



The pyramidal cell as a multi-layered network

(a)

2-Layer model

(b)
W
p -t
Thin branch
subunits
B

Hausser & Mel, 2003



eLIFE RESEARCH ARTICLE ‘ 8 @

elifesciences.org

Towards deep learning with segregated
dendrites
Jordan Guerguiev'?, Timothy P Lillicrap®, Blake A Richards’?4*

'Department of Biological Sciences, University of Toronto Scarborough, Toronto,
Canada; *Department of Cell and Systems Biology, University of Toronto, Toronto,
Canada; *DeepMind, London, United Kingdom; *Learning in Machines and Brains
Program, Canadian Institute for Advanced Research, Toronto, Canada

Abstract Deep learning has led to significant advances in artificial intelligence, in part, by
adopting strategies motivated by neurophysiology. However, it is unclear whether deep learning
could occur in the real brain. Here, we show that a deep learning algorithm that utilizes multi-
compartment neurons might help us to understand how the neocortex optimizes cost functions.
Like neocortical pyramidal neurons, neurons in our model receive sensory information and higher-
order feedback in electrotonically segregated compartments. Thanks to this segregation, neurons
in different layers of the network can coordinate synaptic weight updates. As a result, the network
learns to categorize images better than a single layer network. Furthermore, we show that our
algorithm takes advantage of multilayer architectures to identify useful higher-order
representations—the hallmark of deep learning. This work demonstrates that deep learning can be
achieved using segregated dendritic compartments, which may help to explain the morphology of
neocortical pyramidal neurons.

DOI: https://doi.org/10.7554/eLife.22901.001

December 5, 2017



Take-home messages

1. Synaptic integration is the way inputs are combined to generate output

2. The temporal and spatial pattern of inputs is critical to synaptic summation

3. Dendrites express voltage-gated channels which can promote spike
backpropagation or trigger local spikes

4. Active dendrites generate functional subcompartments in the neuron

9. Synaptic integration in real neurons is more complex - and more
powerful - than in simple, linear-summing units



